crystallization papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Kenji Sugawara,^a Nobuo N. Suzuki,^{a,b} Yuko Fujioka,^{a,b} Noboru Mizushima,^c Yoshinori Ohsumi^c and Fuyuhiko Inagaki^{a,b}*

^aGraduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, Japan, ^bCREST, Japan Science and Technology Corporation, 4-1-8 Honmachi, Kawaguchi 332-0012, Japan, and ^cDepartment of Cell Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan

Correspondence e-mail: finagaki@pharm.hokudai.ac.jp

 ${\rm (\!\widehat{\!\!\!\!C\!\!\!}}$ 2003 International Union of Crystallography Printed in Denmark – all rights reserved

Crystallization and preliminary X-ray analysis of LC3-I

Aut7/Apg8 is located in the intermediate structures of the autophagosome and plays an essential role in autophagosome formation. The processed form, cleaved at a C-terminus of Gly120 and called LC3-I, was expressed, purified and crystallized in two crystal forms. One form belongs to space group $I4_1$, with unit-cell parameters a = 84.39, c = 36.89 Å. The other form belongs to space group $P4_1$ or $P4_3$, with unit-cell parameters a = 60.48, c = 35.28 Å. From the latter form, a complete diffraction data set was collected to 2.1 Å resolution.

1. Introduction

Autophagy is a dynamic membrane-generation process for bulk protein degradation in the lysosome/vacuole (Baba et al., 1994; Klionsky & Ohsumi, 1999). Cytoplasmic components of the cell are enclosed by double-membrane structures known as autophagosomes for delivery to lysosomes/vacuoles. This process is crucial for survival during starvation and cell differentiation. Aut7/Apg8 was first identified as a protein located in the intermediate structures of the autophagosome and is necessary for autophagosome formation in yeast (Kirisako et al., 1999; Huang et al., 2000). Aut7 exists in two forms, either in a free/peripherally membrane-bound form or in a tightly membrane-associated form (Kirisako et al., 2000). In the latter form, the C-terminal region of Aut7 is cleaved and the remaining protein is covalently conjugated to phosphatidylethanolamine (PE) through ubiquitylation-like reactions (Ichimura et al., 2000).

The protein LC3, which was the first identified homologue of Aut7, is a light chain of the microtubule-associated protein 1 in rat (Mann & Hammarback, 1994). Recently, LC3 has been shown to be proteolytically processed at the C-terminus of the conserved Gly120 to produce an active form, called LC3-I (Kabeya *et al.*, 2000). It is then further modified to another form, called LC3-II, which is localized to the autophagosomal membrane (Kabeya *et al.*, 2000). Although the target molecule has not been identified, LC3-II is possibly conjugated to PE in a manner similar to Aut7.

Recently, X-ray and NMR structures of two other mammalian Aut7 homologues, GATE-16, a 16 kDa Golgi-associated ATPase enhancer, and GABARAP, the GABA_Areceptor-associated protein, have been reported (Paz *et al.*, 2000; Knight *et al.*, 2002; Bavro *et al.*, 2002; Stangler *et al.*, 2002). While these structures revealed the adoption of ubiquitin-like folds, the structural basis for their functional differences remains to be elucidated. In this report, we expressed, purified and crystallized rat LC3-I. By determining the three-dimensional structure of LC3-I, the functional differences between the three mammalian Aut7 homologues and the molecular role of LC3 in autophagy can be studied.

Received 13 March 2003

Accepted 16 May 2003

2. Experimental

2.1. Expression and purification

As the C-terminal residues (121-142) of LC3 were susceptible to proteolysis in Escherichia coli, these residues were excluded from the construct. The region encoding residues 1-120, which corresponds to LC3-I, was inserted into a pGEX-6P vector (Amersham-Pharmacia) using BamHI-EcoRI restriction sites. LC3-I was expressed in E. coli BL21(DE3) with glutathione S-transferase (GST) fused at the N-terminus. After cell lysis, the GST-fusion protein was purified by affinity chromatography using a glutathione-Sepharose 4B column. After cleavage of the GST protein from LC3-I with PreScission protease (Amersham-Pharmacia), gel-filtration chromatography was performed using HiLoad Superdex75 on an ÄKTA system (Amersham-Pharmacia). The purified protein was concentrated to 20–30 mg ml⁻¹ in 0.15 *M* NaCl with 20 mM Tris-HCl pH 7.4.

2.2. Crystallization

Crystallization trials were performed using the sitting-drop vapour-diffusion method at 293 K. Initial screening was performed using sparse-matrix kits from Hampton Research and Emerald Biostructures. Typically, $0.5 \,\mu$ l drops of protein solution were mixed with equal amounts of reservoir solution. LC3-I was crystallized into two forms. Form I was

Figure 1

A diffraction image of LC3-I. The diffraction image was taken with a Rigaku R-AXIS IV imaging-plate detector using Cu $K\alpha$ radiation from an in-house Rigaku rotating-anode X-ray generator operating at 50 kV and 100 mA.

obtained with a reservoir solution consisting of 27% PEG 6000, 0.2 *M* cobalt chloride hexahydrate and 0.1 *M* acetic acid/sodium acetate pH 5.6. Form II was obtained with a reservoir solution consisting of 20% PEG 3350 and 0.05 *M* sodium citrate pH 5.5. Form I crystals reached dimensions of $30 \times 30 \times$ 350 µm after a few days and form II crystals reached dimensions of $50 \times 50 \times 250$ µm after three weeks.

2.3. Preliminary X-ray analysis

All diffraction data were collected at 100– 110 K on a Rigaku R-AXIS IV imagingplate detector using Cu $K\alpha$ radiation from an in-house Rigaku rotating-anode X-ray generator operating at 50 kV and 100 mA. Crystals were immersed into reservoir solu-

Table 1

Diffraction data statistics of LC3-I crystals.

Values in parentheses refer to the outer shell.

Crystal form	Ι	II
Space group	<i>I</i> 4 ₁	P41 or P43
Unit-cell parameters (Å)		
a, b	84.39	60.48
С	36.89	35.28
Molecules per AU	1	1
Molecular weight (Da)	14555	14555
$V_{\rm M}$ † (Å ³ Da ⁻¹)	2.32	2.28
Resolution range (Å)	100-3.5	100 - 2.1
	(3.63 - 3.5)	(2.18 - 2.1)
Observed reflections	3365	24966
Unique reflections	1590	7575
Completeness (%)	93.9 (93.9)	99.5 (100)
$R_{\text{merge}}(I)$ ‡	0.090 (0.37)	0.070 (0.313)
$I/\sigma(I)$	11.2 (2.4)	20.6 (4.0)

[†] Matthews coefficient (Matthews, 1968). [‡] $R_{\text{merge}}(I) = (\sum \sum |I_i - \langle I \rangle|) / \sum \sum I_i$, where I_i is the intensity of the *i*th observation and $\langle I \rangle$ is the mean intensity.

tion which had been supplemented with 10-15% glycerol as a cryoprotectant for several seconds and were then flash-cooled and kept in a stream of nitrogen gas at 100-110 K during data collection. A complete diffraction data set was collected to 2.1 Å resolution (Fig. 1). Diffraction data were indexed, integrated and scaled with the programs DENZO and SCALEPACK (Otwinowski & Minor, 1997). X-ray diffraction data statistics are summarized in Table 1. Attempts to obtain the phases for the structure of LC3-I are under way using the GATE-16 structure, which has 39% sequence identity (PDB code 1eo6), as a model for molecular replacement.

This work was supported by CREST, Japan Science and Technology (JST) and by a Grant-in-Aid for Scientific Research on Priority Areas and National Project on Protein Structural and Functional Analyses from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- Baba, M., Takeshige, K., Baba, N. & Ohsumi, Y. (1994). J. Cell Biol. 124, 903–913.
- Bavro, V. N., Sola, M., Bracher, A., Kneussel, M., Betz, H. & Weissenhorn, W. (2002). *EMBO Rep.* 3, 183–189.
- Huang, W. P., Scott, S. V., Kim, J. & Klionsky, D. J. (2000). J. Biol. Chem. 275, 5845–5851.
- Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T. & Ohsumi, Y. (2000). *Nature (London)*, 408, 489–493.
- Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. & Yoshimori, T. (2000). *EMBO J.* 19, 5720–5728.
- Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T. & Ohsumi, Y. (1999). J. Cell Biol. 147, 435–446.
- Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., Ohsumi, M., Takao, T., Noda, T. & Ohsumi, Y. (2000). J. Cell Biol. 151, 263–276.
- Klionsky, D. J. & Ohsumi, Y. (1999). Annu. Rev. Cell Dev. Biol. 15, 1–32.
- Knight, D., Harris, R., McAlister, M. S., Phelan, J. P., Geddes, S., Moss, S. J., Driscoll, P. C. & Keep, N. H. (2002). J. Biol. Chem. 277, 5556– 5561.
- Mann, S. S. & Hammarback, J. A. (1994). J. Biol. Chem. 269, 11492–11497.
- Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. Otwinowski, Z. & Minor, W. (1997). Methods
- Enzymol. 276, 307–326.
- Paz, Y., Elazar, Z. & Fass, D. (2000). J. Biol. Chem. 275, 25445–25450.
- Stangler, T., Mayr, L. M. & Willbold, D. (2002). J. Biol. Chem. 277, 13363–13366.